Infinitely many periodic solutions for a semilinear Euler-Bernoulli beam equation with variable coefficients

نویسندگان

چکیده

This paper is devoted to the study of periodic solutions for a semilinear Euler-Bernoulli beam equation with variable coefficients. Such mathematical model may be described infinitesimal, free, undamped in-plane bending vibrations thin straight elastic beam. When frequency $\omega =\frac{2\pi}{T}$ rational, some properties operator coefficients are investigated. We obtain existence when nonlinear term monotone and bounded.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

Infinitely many solutions for a class of $p$-biharmonic‎ ‎equation in $mathbb{R}^N$

‎Using variational arguments‎, ‎we prove the existence of infinitely‎ ‎many solutions to a class of $p$-biharmonic equation in‎ ‎$mathbb{R}^N$‎. ‎The existence of‎ ‎nontrivial‎ ‎solution is established under a new‎ ‎set of hypotheses on the potential $V(x)$ and the weight functions‎ ‎$h_1(x)‎, ‎h_2(x)$‎.

متن کامل

2 00 7 Distributional solution concepts for the Euler - Bernoulli beam equation with discontinuous coefficients ∗

We study existence and uniqueness of distributional solutions w to the ordinary differential equation d 2 dx2 “ a(x) · d 2 w(x) dx2 ” + P (x) d 2 w(x) dx2 = g(x) with discontinuous coefficients and right-hand side. For example, if a and w are non-smooth the product a · w′′ has no obvious meaning. When interpreted on the most general level of the hierarchy of distributional products discussed in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Nonlinear Science and Numerical Simulation

سال: 2021

ISSN: ['1878-7274', '1007-5704']

DOI: https://doi.org/10.1016/j.cnsns.2021.105756